Original Russian Text Copyright © 2001 by Rogachev, Filimonov, Yusubov.

SHORT COMMUNICATIONS

New Reaction of Terminal Acetylenes with Nitrates in the Presence of Sulfur Trioxide: Heterocyclization into 3-Acyl-5-Aryl(Alkyl)Isoxazoles*

V.O. Rogachev¹, V.D. Filimonov¹, and M.S. Yusubov²

¹Tomsk Polytechnic University, Tomsk, 634034 Russia ²Siberian State Medical University, Tomsk, Russia

Received February 15, 2001

We showed formerly that phenylacetylene when treated with sulfuric acid or sulfur trioxide gave rise to an unsaturated δ -sultone, 4,6-diphenyl[1,2]oxa-thiyne-2,2-dioxide [1]. On the other hand, nitrates in the presence of iodine or KI in acetic acid afford with acetylenes 1-iodo-2-nitroalkenes [2].

However at combined treatment of phenylacetylene (**Ia**) in glacial acetic acid with SO₃ and sodium, potassium, or ammonium nitrates we obtained under mild conditions 3-benzoyl-5-phenylisoxazole (**IIa**) in 55% yield. The reaction discovered is of a general character: under similar conditions 1-hexyne (**Ib**) furnishes 5-butyl-3-pentanoylisoxazole (**IIb**) in 53% yield.

$$2R = \frac{SO_3\text{-dioxane, NaNO}_3}{AcOH, 20^{\circ}C} \xrightarrow{R} R$$

$$R = Ph (a), Bu (b).$$

The traditional procedure for isoxazoles preparation consists in condensation of phosphorus ylides or acetylenes with ω -halo- ω -isonitroso derivatives [3]. Isoxazoles **IIa**, **b** were previously obtained in up to 40% yield at treating compounds **Ia**, **b** in nitromethane with nitric acid in the presence of tetrabutyl-ammonium tetrachlorourate [4]. The reaction we found is obviously easier synthetic approach to this class compounds.

General procedure for heterocyclization of acetylenes Ia, b. A mixture of 4.55 mmol of acetylene

Ia, b, 0.77 g (9.1 mmol) of fine powder of sodium nitrate, and 0.8 g (4.76 mmol) of a complex SO_3 -dioxane in 10 ml of the glacial acetic acid was vigorously stirred for 3 h at 20°C. The reaction mixture was diluted with 40 ml of cold water, neutralized with Na_2CO_3 , and extracted with ether. The extract was dried with Na_2SO_4 , the solvent was removed in a vacuum, and the residue was subjected to chromatography on a column packed with silica gel (40–100 μ , eluent hexane, hexane–benzene, 5:1).

3-Benzoyl-5-phenylisoxazole (**IIa**). Yield 55%. mp 86–87°C (hexane). IR spectrum (KBr, v, cm⁻¹): 1660 (C=æ). ¹H NMR spectrum (200 MHz, CDCl₃, δ , ppm): 7.35 s (1H, H⁴), 7.50 m (5H arom), 7.64 t (1H arom), 7.83 m (2H arom), 8.33 d (2H arom). ¹³C NMR spectrum (50 MHz, CDCl₃, δ _C, ppm): 100.10 (C⁴); 125.84, 126.54, 128.44, 129.00, 130.55, 130.58, 133.91, 135.58; 162.27 (C³); 170.62 (C⁵); 185.64 (Cæ). Mass spectrum, m/z (I_{rel} , %): 249 (40) M^+ , 105 (100) [PhCO]⁺, 77 (60) [Ph]⁺, 51 (20) [M-PhCO-Ph-O]⁺, 28 (12) [CO]⁺. Found, %: C 76.52; H 5.29; N 5.56. C₁₆H₁₁NO₂. Calculated, %: C 77.10; H 4.45; N 5.62.

5-Butyl-3-pentanoylisoxazole (**IIb**). Yield 53%. Light-yellow oily substance. IR spectrum (KBr, ν, cm⁻¹): 1704 s (Cæ). ¹H NMR spectrum (200 MHz, CDCl₃, δ, ppm): 0.94 m (6H, 2CH₃), 1.40 m (4H, 2CH₂), 1.70 m (4H, 2CH₂), 2.80 t (2H, CH₂), 3.03 t (2H, CH₂), 6.35 s (1H, H⁴). ¹³C NMR spectrum (CDCl₃, δ_C, ppm): 13.60 (CH₃), 13.82 (CH₃), 22.07 (CH₂), 22.29 (CH₂), 25.81 (CH₂), 26.34 (CH₂), 29.42 (CH₂), 39.56 (CH₂), 99.27 (C⁴), 161.83 (C⁵), 175.38 (C³), 195.24 (CO). Mass spectrum, m/z (I_{rel} , %): 194 (1) [M-Me]⁺, 180 (1) [M-Et]⁺, 167 (9) [M-Et-CH]⁺, 152 (22) [M-Bu]⁺, 139 (8)

The study was carried out under financial support of the Russian Foundation for Basic Research (grant no. 00-03-32812a.

[*M*-Bu-CH]⁺, 124 (8) [*M*-BuCO]⁺, 109 (4) [*M*-BuCO-N-H]⁺, 85 (100) [BuCO]⁺, 68 (10) [*M*-2Bu-CO+H]⁺, 67 (5) [*M*-2Bu-CO]⁺, 57 (91) [Bu]⁺, 55 (14) [PrC]⁺, 43 (6) [Pr]⁺, 42 (7) [EtCH]⁺, 41 (39) [EtC]⁺, 39 (12) [*M*-2BuCO]⁺, 29 (24) [Et]⁺, 28 (6) [MeCH]⁺, 27 (12) [MeC]⁺.

IR spectra were recorded on spectrophotometer Nicolet 205 from KBr pellets. ¹H and ¹³C NMR spectra were registered on spectrometer Bruker ASP-300 at 300.13 and 75.48 MHz respectively, internal reference TMS, solvent CDCl₃. Mass spectra were measured by GC-MS method on spectrometer Hewlett Packard MSD 5972 (ionizing electrons energy 70 eV) combined with a chromatograph Hewlett Packard 5890.

REFERENCES

- Yusubov, M.S., Filimonov, V.D., and Rogachev, V.O., Zh. Org. Khim., 1996, vol. 32, no. 7, pp. 1272–1273; Rogachev, V.O., Yusubov, M.S., and Filimonov, V.D., Zh. Org. Khim., 1999, vol. 35, no. 3, pp. 439–442.
- 2. Yusubov, M.S., Perederina, I.A., Filimonov, V.D., Park, T.-H., and Chi, K.-W., *Synth. Commun.*, 1998, vol. 28, no. 5, pp. 833–836.
- 3. Spirio, V. and Aiello, E., *Ann. Chimica*, 1968, vol 58, no. 2, pp. 128–135; Shevchuk, M.I., Shpak, S.T., and Dombrovskii, A.V., *Zh. Obshch. Khim.*, 1975, vol. 45, no. 12, pp. 2609–2611.
- 4. Gasparini, F., Giovannoli, M., Misiti, D., Natile, G., Calmieri, G., and Maresca, L., *J. Am. Chem. Soc.*, 1993, vol. 115, no. 10, pp. 4401–4402.